

# **AS-Path Analysis** Testing Claims of "Tier 1" Status and Examining BGP Routing Anomalies

Version 1.2 September, 2006 Gaurab Raj Upadhaya Bill Woodcock Vijay Adhikari



Autonomous systems which claim "tier-1" status differentiate themselves from others by claiming that they do not receive transit from any other autonomous system.



Autonomous systems which do not receive transit may reach other ASes by selling transit to them or by peering with them.



All AS-paths take one of two forms: One in which the "center" is an AS which provides transit to two down-stream ASes:



Dupont buys Sprint sells SBC sells Fry's



All AS-paths take one of two forms: Or one in which the "center" is a peering session between two ASes, each of which provides transit to one downstream AS:

PCH buys Verio peers Sprint sells SBC sells Fry's



## Proposition

Since there can exist no more than one peering session in any AS-path, No more than two ASNs can make a legitimate claim to "tier-1" status with respect to any valid AS-path.



#### Seed-list to test

For an arbitrary starting-point to test our proposition, we took the intersection of the lists of most commonly-occurring transit ASes from a number of routers:

| 701  | UUNet / MCI     | 1239 | Sprint            |
|------|-----------------|------|-------------------|
| 3356 | Level 3         | 2914 | NTT / Verio       |
| 7018 | AT&T            | 6461 | MFN               |
| 209  | Qwest           | 2828 | XO Communications |
| 3549 | Global Crossing | 6461 | SAVVIS            |



#### Adding a Candidate

Adding ATDN (AOL Transit Data Network) to our list yields no additional observed anomalies. Thus they're probably fairly "tier-1."



### Adding a Candidate

The arbitrary method by which we seeded our list does not find content providers, only transit providers.

ATDN is reputed to be "tier-1" so we can test our proposition by adding them, and checking to see whether this yields additional anomalies...



# **Testing the Proposition**

We find anomalous cases, in which three or more ASNs from our test list occur in the same AS-path:

65.215.36.0/24

| 3549               | 6221       | 3356    | 701   | 22907 |
|--------------------|------------|---------|-------|-------|
| Global<br>Crossing | Cybersites | Level 3 | UUNET |       |



#### Leaked Routes (more than 2 Tier1 ASNs)





## **More Anomalies**

#### **Inconsistent ASNs**

#### Non-contiguous Repeats

#### **Private ASNs**

**Unallocated ASNs** 



#### **Inconsistent Prefix Announcements**

Examples 12.33.218.0/24 Announced by more than 1 ASNs: 22057, 23181

12.64.255.0/24 Announced by more than 1 ASNs: 4264, 17228, 17229, 17233



#### **Inconsistent Prefix Announcements**





#### **Inconsistent Prefix Announcements**





#### **Non-contiguous Repeats**

Examples:

1299 7018 12163 12163 12162 12163 12163 12163 12163 12163 7018 65000 65001 7018 1239 4648 2764 9837 9476 11608 13768 21548 21548 21548 21548 7018 21548 36231



## **Non-contiguous Repeats**





## **Non-contiguous Repeats**





#### **Private AS Number Leak**

#### 7018 65000 65001 7018 1239 4648 2764 9837 9476 14608 19029 2516 65000 4134



#### **Private AS Number Leak**





#### **Private AS Number Leak**





# **Using and Leaking Unallocated ASN**

 24587 is the only ASN leaking an unallocated ASN

 81.17.39.128/27
 3333 24587 64500





## **'X' relationships**

Contrary to our assumption on ISP relationship, we see quite a few 'X' relationship

e.g 7660 / 2516 \7473 \9498 X 9730 X 9498 \17913 8001 / 7018 \9498 X 9730 X 9498 \17625 Where, AS9498 & AS9730 are two parts of same company

 5650 / 7018 \ 12069 X
 23269

 5650 ? 22773 \ 23269 \ 12069

Where, it's very likely that 23269 is leaking routes



# **X** Relationship

Where two ASNs announce each other routes

Use iterative parsing of the routing table data from multiple sources

Additional cross-checks

Assume the top 10 ASNs as not buying from anyone

Look at peer routes collected on PCH routers

Regional full routes in 4 locations around the world from our own routers and by others.



# **Deciphering X Relationships**

Using Whois is sometimes useful

| aut-num: | AS10310                     |
|----------|-----------------------------|
| as-name: | Yahoo-prod                  |
| descr:   | Yahoo, Inc. production AS   |
| aut-num: | AS26085                     |
| as-name: | Yahoo-SC5                   |
| descr:   | <b>Yahoo SC5 datacenter</b> |

sometimes it's not:

| aut-num: | AS35324                 |
|----------|-------------------------|
| import:  | from AS35391 accept ANY |
| export:  | to AS35391 announce ANY |
| aut-num: | AS35391                 |
| import:  | from AS35324 accept ANY |
| export:  | to AS35324 announce ANY |



# **Deciphering X Relationships**

Some AS-PATH are difficult to explain



Best Guess here : ANC is leaking Routes, but how Tiscali comes between ANC and CNC is difficult to imagine - both topologically and geographically



## **X - Relationship count**





# Plan

Setup a e-mail mechanism to report possible route-leaks to ASNs

Setup a web front end so that operators can check against possible route leaks by peers and customers

More extensive cross check mechanism, against historical and archived data



## Thanks, and Questions?

Copies of this presentation can be found in PDF and QuickTime formats at:

http://www.pch.net/resources/papers/bgp-aspath-analysis

Gaurab Raj Upadhaya Vijay Kumar Adhikari Bill Woodcock

bgp-anomalies@pch.net