AS-Path Analysis Testing Claims of "Tier 1" Status and Examining BGP Routing Anomalies

Version 1.2
September, 2006
Gaurab Raj Upadhaya
Bill Woodcock
Vijay Adhikari

Background

Autonomous systems which claim "tier-1" status differentiate themselves from others by claiming that they do not receive transit from any other autonomous system.

Background

Autonomous systems which do not receive transit may reach other ASes by selling transit to them or by peering with them.

Background

All AS-paths take one of two forms:
One in which the "center" is an AS which provides transit to two down-stream ASes:

$$
7823 /^{1239}{ }^{7132} \backslash_{27291}
$$

Dupont buys Sprint sells SBC sells Fry's

Packet Clearing House

Background

All AS-paths take one of two forms:
Or one in which the "center" is a peering session between two ASes, each of which provides transit to one downstream AS:

PCH buys Verio peers Sprint sells SBC sells Fry's

Proposition

Since there can exist no more than one peering session in any AS-path, No more than two ASNs can make a legitimate claim to "tier-1" status with respect to any valid AS-path.

Seed-list to test

For an arbitrary starting-point to test our proposition, we took the intersection of the lists of most commonly-occurring transit ASes from a number of routers:

701	UUNet / MCI	1239	Sprint
3356	Level 3	2914	NTT / Verio
7018	AT\&T	6461	MFN
209	Qwest	2828	XO Communications
3549	Global Crossing	6461	SAVVIS

Adding a Candidate

Adding ATDN (AOL Transit Data Network) to our list yields no additional observed anomalies. Thus they're probably fairly "tier-1."

Adding a Candidate

The arbitrary method by which we seeded our list does not find content providers, only transit providers.

ATDN is reputed to be "tier-1" so we can test our proposition by adding them, and checking to see whether this yields additional anomalies...

Testing the Proposition

We find anomalous cases, in which three or more ASNs from our test list occur in the same AS-path:
65.215.36.0/24

| 3549
 Global
 Crossing | 6221
 Cybersites | 3356
 Level 3 | 701
 UUNET | 22907 |
| :---: | :---: | :---: | :---: | :---: | :---: |

Leaked Routes

 (more than 2 Tier1 ASNs)

More Anomalies

Inconsistent ASNs
Non-contiguous Repeats
Private ASNs
Unallocated ASNs

Inconsistent Prefix Announcements

Examples
12.33.218.0/24

Announced by more than 1 ASNs: 22057, 23181
12.64.255.0/24

Announced by more than 1 ASNs:
4264, 17228, 17229, 17233

Inconsistent Prefix Announcements

Inconsistent Prefix Announcements

Non-contiguous Repeats

Examples:

1299701812163121631216212163121631216312163 70186500065001701812394648276498379476 11608137682154821548215482154870182154836231

Packet Clearing House

Non-contiguous Repeats

Non-contiguous Repeats

Private AS Number Leak

70186500065001701812394648276498379476 14608190292516650004134

Private AS Number Leak

Private AS Number Leak

Using and Leaking Unallocated ASN

24587 is the only ASN leaking an unallocated ASN 81.17.39.128/27 33332458764500

'X' relationships

Contrary to our assumption on ISP relationship, we see quite a few ' X ' relationship

```
e.g
7660 / 2516 \7473 \9498 X 9730 X 9498\17913
8001 / 7018 \9498 X 9730 X 9498 \17625
Where, AS9498 \& AS9730 are two parts of same company
```

```
5650 / 7018 \ 12069 X 23269
```

5650 / 7018 \ 12069 X 23269
5650 ? 22773 \ 23269 \ 12069

```
5650 ? 22773 \ 23269 \ 12069
```

Where, it's very likely that 23269 is leaking routes

X Relationship

Where two ASNs announce each other routes
Use iterative parsing of the routing table data from multiple sources

Additional cross-checks

Assume the top 10 ASNs as not buying from anyone
Look at peer routes collected on PCH routers
Regional full routes in 4 locations around the world from our own routers and by others.

Deciphering X Relationships

Using Whois is sometimes useful

```
aut-num: AS10310
as-name: Yahoo-prod
descr: Yahoo, Inc. production AS
aut-num: AS26085
as-name: Yahoo-SC5
descr: Yahoo SC5 datacenter
```

sometimes it's not:
aut-num:
import:
export:
aut-num:
import:
export:

AS35324
from AS35391 accept ANY to AS35391 announce ANY

AS35391
from AS35324 accept ANY
to AS35324 announce ANY

Pel Packet Clearing House
 Deciphering X Relationships

Some AS-PATH are difficult to explain
 10461

$\begin{gathered} 6461 \\ \text { MFN } \end{gathered}$	\}	$\begin{gathered} 10026 \\ \text { Asia } \\ \text { Netcom } \end{gathered}$	X	3257	?	4837 China Netcom		\{ 23851, 24139, 4751 \}

Best Guess here : ANC is leaking Routes, but how Tiscali comes between ANC and CNC is difficult to imagine - both topologically and geographically

Packet Clearing House

X - Relationship count

Plan

Setup a e-mail mechanism to report possible route-leaks to ASNs

Setup a web front end so that operators can check against possible route leaks by peers and customers

More extensive cross check mechanism, against historical and archived data

Thanks, and Questions?

Copies of this presentation can be found in PDF and QuickTime formats at:

http:// www.pch.net / resources / papers / bgp-aspath-analysis

Gaurab Raj Upadhaya
Vijay Kumar Adhikari
Bill Woodcock

bgp-anomalies@pch.net

